Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
TensorFlow Reinforcement Learning Quick Start Guide

You're reading from   TensorFlow Reinforcement Learning Quick Start Guide Get up and running with training and deploying intelligent, self-learning agents using Python

Arrow left icon
Product type Paperback
Published in Mar 2019
Publisher Packt
ISBN-13 9781789533583
Length 184 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Kaushik Balakrishnan Kaushik Balakrishnan
Author Profile Icon Kaushik Balakrishnan
Kaushik Balakrishnan
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Up and Running with Reinforcement Learning 2. Temporal Difference, SARSA, and Q-Learning FREE CHAPTER 3. Deep Q-Network 4. Double DQN, Dueling Architectures, and Rainbow 5. Deep Deterministic Policy Gradient 6. Asynchronous Methods - A3C and A2C 7. Trust Region Policy Optimization and Proximal Policy Optimization 8. Deep RL Applied to Autonomous Driving 9. Assessment 10. Other Books You May Enjoy

Model-free and model-based training

RL algorithms that do not learn a model of how the environment works are called model-free algorithms. By contrast, if a model of the environment is constructed, then the algorithm is called model-based. In general, if value (V) or action-value (Q) functions are used to evaluate the performance, they are called model-free algorithms as no specific model of the environment is used. On the other hand, if you build a model of how the environment transitions from one state to another or determines how many rewards the agent will receive from the environment via a model, then they are called model-based algorithms.

In model-free algorithms, as aforementioned, we do not construct a model of the environment. Thus, the agent has to take an action at a state to figure out if it is a good or a bad choice. In model-based RL, an approximate model of the environment is learned; either jointly learned along with the policy, or learned a priori. This model of the environment is used to make decisions, as well as to train the policy. We will learn more about both classes of RL algorithms in later chapters.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime