Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
TensorFlow Machine Learning Cookbook

You're reading from   TensorFlow Machine Learning Cookbook Over 60 practical recipes to help you master Google's TensorFlow machine learning library

Arrow left icon
Product type Paperback
Published in Feb 2017
Publisher Packt
ISBN-13 9781786462169
Length 370 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Nick McClure Nick McClure
Author Profile Icon Nick McClure
Nick McClure
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with TensorFlow 2. The TensorFlow Way FREE CHAPTER 3. Linear Regression 4. Support Vector Machines 5. Nearest Neighbor Methods 6. Neural Networks 7. Natural Language Processing 8. Convolutional Neural Networks 9. Recurrent Neural Networks 10. Taking TensorFlow to Production 11. More with TensorFlow Index

Introduction


Of all the machine-learning algorithms we have considered thus far, none have considered data as a sequence.To take sequence data into account, we extend neural networks that store outputs from prior iterations. This type of neural network is called a recurrent neural network (RNN).Consider the fully connected network formulation:

Here, the weights are given by Amultiplied by the input layer, x, and then run through an activation function, , which gives the output layer, y.If we have a sequence of input data, , we can adapt the fully connected layer to take prior inputs into account, as follows:

On top of this recurrent iteration to get the next input, we want to get the probability distribution output, as follows:

Once we have a full sequence output, , we can consider the target a number or category by just considering the last output.See the following figure for how a general architecture might work:

Figure 1: To predict a single number, or a category, we take a sequence of inputs...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image