In this chapter, we started with an introduction to a typical machine learning problem, online advertising click-through prediction, and the inherent challenges, including categorical features. We then looked at tree-based algorithms that can take in both numerical and categorical features. We then had an in-depth discussion about the decision tree algorithm: the mechanics, different types, how to construct a tree, and two metrics (Gini Impurity and entropy) that measure the effectiveness of a split at a node. After constructing a tree in an example by hand, we implemented the algorithm from scratch. We also learned how to use the decision tree package from scikit-learn and applied it to predict click-through. We continued to improve the performance by adopting the feature-based random forest bagging algorithm and the chapter ended with some ways to tune a random forest...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine