Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python for Security and Networking

You're reading from   Python for Security and Networking Leverage Python modules and tools in securing your network and applications

Arrow left icon
Product type Paperback
Published in Jun 2023
Publisher Packt
ISBN-13 9781837637553
Length 586 pages
Edition 3rd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
José Manuel Ortega José Manuel Ortega
Author Profile Icon José Manuel Ortega
José Manuel Ortega
Arrow right icon
View More author details
Toc

Table of Contents (23) Chapters Close

Preface 1. Section 1: Python Environment and System Programming Tools
2. Working with Python Scripting FREE CHAPTER 3. System Programming Packages 4. Section 2: Network Scripting and Packet Sniffing with Python
5. Socket Programming 6. HTTP Programming and Web Authentication 7. Analyzing Network Traffic and Packet Sniffing 8. Section 3: Server Scripting and Port Scanning with Python
9. Gathering Information from Servers with OSINT Tools 10. Interacting with FTP, SFTP, and SSH Servers 11. Working with Nmap Scanner 12. Section 4: Server Vulnerabilities and Security in Web Applications
13. Interacting with Vulnerability Scanners 14. Interacting with Server Vulnerabilities in Web Applications 15. Obtain Information from Vulnerabilities Databases 16. Section 5: Python Forensics
17. Extracting Geolocation and Metadata from Documents, Images, and Browsers 18. Python Tools for Brute-Force Attacks 19. Cryptography and Code Obfuscation 20. Assessments – Answers to the End-of-Chapter Questions
21. Other Books You May Enjoy
22. Index

Development environments for Python scripting

In this section, we will review PyCharm and Python IDLE as development environments for Python scripting.

Setting up a development environment

In order to rapidly develop and debug Python applications, it is necessary to use an Integrated Development Environment (IDE). If you want to try different options, we recommend you check out the list that is on the official Python site, where you can see the tools according to your operating systems and needs:

https://wiki.python.org/moin/IntegratedDevelopmentEnvironments

Out of all the environments, the following two are the ones we will look at:

Debugging with Python IDLE

Python IDLE is the default IDE that is installed when you install Python in your operating system. Python IDLE allows you to debug your script and see errors and exceptions in the Python shell console:

Figure 1.1: Running a script in the Python shell

In the preceding screenshot, we can see the output in the Python shell and the exception is related to File not found.

PyCharm

PyCharm (https://www.jetbrains.com/pycharm) is a multi-platform tool that we can find for many operating systems, such as Windows, Linux, and macOS X. There are two versions of PyCharm, community and technical, with variations in functionality relating to web framework integration and support for databases. The main advantages of this development environment are as follows:

  • Autocomplete, syntax highlighter, analysis tool, and refactoring
  • Integration with web frameworks, such as Django and Flask
  • An advanced debugger
  • Connection with version control systems, such as Git, CVS, and SVN

In the following screenshot, we can see how to configure virtualenv in PyCharm:

Figure 1.2: Configuring virtualenv in PyCharm

In the preceding screenshot, we are setting the configuration related to establishing a new environment for the project using Virtualenv.

Debugging with PyCharm

In this example, we are debugging a Python script that is applying simple inheritance. An interesting topic is the possibility of adding a breakpoint to our script. In the following screenshot, we are setting a breakpoint in the __init__ method of the class ChildClass:

Figure 1.3: Setting a breakpoint in PyCharm

With the View Breakpoint option, we can see the breakpoint established in the script:

Figure 1.4: Viewing breakpoints in PyCharm

In the following screenshot, we can visualize the values of the parameters that contain the values we are debugging:

Figure 1.5: Debugging variables in PyCharm

In this way, we can know the state of each of the variables at runtime, as well as modify their values to change the logic of our script.

You have been reading a chapter from
Python for Security and Networking - Third Edition
Published in: Jun 2023
Publisher: Packt
ISBN-13: 9781837637553
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime