Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Deep Learning Cookbook

You're reading from   Python Deep Learning Cookbook Over 75 practical recipes on neural network modeling, reinforcement learning, and transfer learning using Python

Arrow left icon
Product type Paperback
Published in Oct 2017
Publisher Packt
ISBN-13 9781787125193
Length 330 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Indra den Bakker Indra den Bakker
Author Profile Icon Indra den Bakker
Indra den Bakker
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Programming Environments, GPU Computing, Cloud Solutions, and Deep Learning Frameworks 2. Feed-Forward Neural Networks FREE CHAPTER 3. Convolutional Neural Networks 4. Recurrent Neural Networks 5. Reinforcement Learning 6. Generative Adversarial Networks 7. Computer Vision 8. Natural Language Processing 9. Speech Recognition and Video Analysis 10. Time Series and Structured Data 11. Game Playing Agents and Robotics 12. Hyperparameter Selection, Tuning, and Neural Network Learning 13. Network Internals 14. Pretrained Models

Adding Long Short-Term Memory (LSTM)


One limitation of a simple RNN is that it only accounts for the direct inputs around the current input. In many applications, and specifically language, one needs to understand the context of the sentence in a larger part as well. This is why LSTM has played an role in applying Deep Learning to unstructured data types such as text. An LSTM unit has an input, forget, and output gate, as is shown in Figure 4.2:

Figure 4.2: Example flow in an LSTM unit

In the following recipe, we will be classifying reviews from the IMDB dataset using the Keras framework.

How to do it...

  1. Let's start with the libraries as follows:
import numpy as np

from keras.preprocessing import sequence
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.layers import Embedding
from keras.layers import LSTM

from keras.datasets import imdb
  1. We will be using the IMDB dataset from Keras; load the data with the following code:
n_words = 1000
(X_train...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime