Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python Deep Learning

You're reading from   Python Deep Learning Exploring deep learning techniques and neural network architectures with PyTorch, Keras, and TensorFlow

Arrow left icon
Product type Paperback
Published in Jan 2019
Publisher Packt
ISBN-13 9781789348460
Length 386 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (5):
Arrow left icon
Gianmario Spacagna Gianmario Spacagna
Author Profile Icon Gianmario Spacagna
Gianmario Spacagna
Daniel Slater Daniel Slater
Author Profile Icon Daniel Slater
Daniel Slater
Valentino Zocca Valentino Zocca
Author Profile Icon Valentino Zocca
Valentino Zocca
Peter Roelants Peter Roelants
Author Profile Icon Peter Roelants
Peter Roelants
Ivan Vasilev Ivan Vasilev
Author Profile Icon Ivan Vasilev
Ivan Vasilev
+1 more Show less
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Machine Learning - an Introduction FREE CHAPTER 2. Neural Networks 3. Deep Learning Fundamentals 4. Computer Vision with Convolutional Networks 5. Advanced Computer Vision 6. Generating Images with GANs and VAEs 7. Recurrent Neural Networks and Language Models 8. Reinforcement Learning Theory 9. Deep Reinforcement Learning for Games 10. Deep Learning in Autonomous Vehicles 11. Other Books You May Enjoy

Value function approximations

So far, we've worked under the assumption that the state- and action- value functions are tabular. However, in tasks with large value spaces, such as computer games, it's impossible to store all possible values in a table. Instead, we'll try to approximate the value functions. To formalize this, let's think of the tabular value functions, and , as actual functions with as many parameters as the number of table cells. As the state space grows, so does the number of parameters, to the point where it becomes impossible to store them. Not only that, but with a large number of states, the agent is bound to enter situations it has never seen before.

Our goal then is to find another set of functions, and , with the following properties:

  • Approximates and with significantly fewer parameters, compared to the tabular version
  • Generalizes...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image