Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Data Cleaning Cookbook

You're reading from   Python Data Cleaning Cookbook Prepare your data for analysis with pandas, NumPy, Matplotlib, scikit-learn, and OpenAI

Arrow left icon
Product type Paperback
Published in May 2024
Publisher Packt
ISBN-13 9781803239873
Length 486 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Michael Walker Michael Walker
Author Profile Icon Michael Walker
Michael Walker
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Anticipating Data Cleaning Issues When Importing Tabular Data with pandas 2. Anticipating Data Cleaning Issues When Working with HTML, JSON, and Spark Data FREE CHAPTER 3. Taking the Measure of Your Data 4. Identifying Outliers in Subsets of Data 5. Using Visualizations for the Identification of Unexpected Values 6. Cleaning and Exploring Data with Series Operations 7. Identifying and Fixing Missing Values 8. Encoding, Transforming, and Scaling Features 9. Fixing Messy Data When Aggregating 10. Addressing Data Issues When Combining DataFrames 11. Tidying and Reshaping Data 12. Automate Data Cleaning with User-Defined Functions, Classes, and Pipelines 13. Index

Using boxplots to identify outliers for continuous variables

Boxplots are essentially a graphical representation of our work in the Identifying outliers with one variable recipe in Chapter 4, Identifying Outliers in Subsets of Data. There, we used the concept of interquartile range (IQR)—the distance between the value at the first quartile and the value at the third quartile—to determine outliers. Any value greater than (1.5 * IQR) + the third quartile value, or less than the first quartile value – (1.5 * IQR), was considered an outlier. That is precisely what is revealed in a boxplot.

Getting ready

We will work with cumulative data on COVID-19 cases and deaths by country, and the National Longitudinal Surveys (NLS) data. You will need the Matplotlib library to run the code on your computer.

How to do it…

We use boxplots to show the shape and spread of Scholastic Assessment Test (SAT) scores, weeks worked, and COVID-19 cases and deaths:

...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime