Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Predictive Analytics

You're reading from   Practical Predictive Analytics Analyse current and historical data to predict future trends using R, Spark, and more

Arrow left icon
Product type Paperback
Published in Jun 2017
Publisher Packt
ISBN-13 9781785886188
Length 576 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ralph Winters Ralph Winters
Author Profile Icon Ralph Winters
Ralph Winters
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with Predictive Analytics FREE CHAPTER 2. The Modeling Process 3. Inputting and Exploring Data 4. Introduction to Regression Algorithms 5. Introduction to Decision Trees, Clustering, and SVM 6. Using Survival Analysis to Predict and Analyze Customer Churn 7. Using Market Basket Analysis as a Recommender Engine 8. Exploring Health Care Enrollment Data as a Time Series 9. Introduction to Spark Using R 10. Exploring Large Datasets Using Spark 11. Spark Machine Learning - Regression and Cluster Models 12. Spark Models – Rule-Based Learning

Saving your work

Now that we have produced our final Spark data frame, we can write it to disk. Then, from the next chapter onwards, we will read it back into the workspace rather than have to recreate it from scratch. If you are proceeding directly to the next chapter, you can skip this step for now:

  • We will save in Parquet file format, which is a very efficient format for Spark and SQL. The %fs (file system) directive allows you to issue a directory (or file listing) command using the ls operating system command.
  • Once the file is saved, you can validate the integrity of the file by reading it back in and assigning it to the out_sd dataframe (again).
  • Use the head command to verify that the data was read back in:
        saveAsParquetFile(out_sd, "/tmp/temp.parquet") 
%fs ls
out_sd <- parquetFile(sqlContext, "/tmp/temp.parquet")
...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image