Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Modern Big Data Processing with Hadoop

You're reading from   Modern Big Data Processing with Hadoop Expert techniques for architecting end-to-end big data solutions to get valuable insights

Arrow left icon
Product type Paperback
Published in Mar 2018
Publisher Packt
ISBN-13 9781787122765
Length 394 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (3):
Arrow left icon
Manoj R Patil Manoj R Patil
Author Profile Icon Manoj R Patil
Manoj R Patil
Prashant Shindgikar Prashant Shindgikar
Author Profile Icon Prashant Shindgikar
Prashant Shindgikar
V Naresh Kumar V Naresh Kumar
Author Profile Icon V Naresh Kumar
V Naresh Kumar
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Enterprise Data Architecture Principles 2. Hadoop Life Cycle Management FREE CHAPTER 3. Hadoop Design Consideration 4. Data Movement Techniques 5. Data Modeling in Hadoop 6. Designing Real-Time Streaming Data Pipelines 7. Large-Scale Data Processing Frameworks 8. Building Enterprise Search Platform 9. Designing Data Visualization Solutions 10. Developing Applications Using the Cloud 11. Production Hadoop Cluster Deployment

Summary

In this chapter, we have learned all the popular data ingestion tools used in production environments. Sqoop is mainly used to import and export data in and out of RDBMS data stores. Apache Flume is used in real-time systems to import data, mainly from files sources. It supports a wide variety of sources and sinks. Apache NiFi is a fairly new tool and getting very popular these days. It also supports GUI-based ETL development. Hortonworks has started supporting this tool since their HDP 2.4 release. Apache Kafka Connect is another popular tool in the market. It is also a part of the Confluent Data Platform. Kafka Connect can ingest entire databases or collect metrics from all your application servers into Kafka topics, making the data available for stream processing with low latency.

Since we so far know how to build Hadoop clusters and how to ingest data in them, we will...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime