Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Text Mining with R

You're reading from   Mastering Text Mining with R Extract and recognize your text data

Arrow left icon
Product type Paperback
Published in Dec 2016
Publisher Packt
ISBN-13 9781783551811
Length 258 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
KUMAR ASHISH KUMAR ASHISH
Author Profile Icon KUMAR ASHISH
KUMAR ASHISH
Arrow right icon
View More author details
Toc

Normalizing texts

Normalization in text basically refers to standardization or canonicalization of tokens, which we derived from documents in the previous step. The simplest scenario possible could be the case where query tokens are an exact match to the list of tokens in document, however there can be cases when that is not true. The intent of normalization is to have the query and index terms in the same form. For instance, if you query U.K., you might also be expecting U.K.

Token normalization can be performed either by implicitly creating equivalence classes or by maintaining the relations between unnormalized tokens. There might be cases where we find superficial differences in character sequences of tokens, in such cases query and index term matching becomes difficult. Consider the words anti-disciplinary and anti-disciplinary. If both these words get mapped into one term named after one of the members of the set for example anti-disciplinary, text retrieval would become so efficient...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime