Preface
Reinforcement Learning (RL) is a field of artificial intelligence used for creating self-learning autonomous agents. On a strong theoretical foundation, this book takes a pragmatic approach and uses examples inspired by real-world industry problems to teach you about state-of-the-art RL.
Starting with bandit problems, Markov decision processes, and dynamic programming, the book provides an in-depth review of the classical RL techniques, such Monte Carlo methods and temporal-difference learning. After that, you will learn about deep Q-learning, policy gradient algorithms, actor-critic methods, model-based methods, and multi-agenst reinforcement learning. Then, the book will introduce you to some of the key approaches behind the most successful RL implementations, such as domain randomization and curiosity-driven learning.
As you advance, you’ll delve into many novel algorithms with advanced implementations using modern Python libraries such as TensorFlow and Ray/RLlib. You’ll also find out how to implement RL in areas such as robotics, supply chain management, marketing, finance, smart cities, and cybersecurity while assessing the tradeoffs between different approaches and avoiding common pitfalls.
By the end of this reinforcement learning book, you’ll have mastered how to train and deploy your own RL agents for solving RL problems.