Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering OpenCV 4 with Python

You're reading from   Mastering OpenCV 4 with Python A practical guide covering topics from image processing, augmented reality to deep learning with OpenCV 4 and Python 3.7

Arrow left icon
Product type Paperback
Published in Mar 2019
Publisher Packt
ISBN-13 9781789344912
Length 532 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Alberto Fernández Villán Alberto Fernández Villán
Author Profile Icon Alberto Fernández Villán
Alberto Fernández Villán
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Section 1: Introduction to OpenCV 4 and Python FREE CHAPTER
2. Setting Up OpenCV 3. Image Basics in OpenCV 4. Handling Files and Images 5. Constructing Basic Shapes in OpenCV 6. Section 2: Image Processing in OpenCV
7. Image Processing Techniques 8. Constructing and Building Histograms 9. Thresholding Techniques 10. Contour Detection, Filtering, and Drawing 11. Augmented Reality 12. Section 3: Machine Learning and Deep Learning in OpenCV
13. Machine Learning with OpenCV 14. Face Detection, Tracking, and Recognition 15. Introduction to Deep Learning 16. Section 4: Mobile and Web Computer Vision
17. Mobile and Web Computer Vision with Python and OpenCV 18. Assessments 19. Other Books You May Enjoy

Preface

In a nutshell, this book is about computer vision using OpenCV, which is a computer vision (and also machine learning) library, and the Python programming language. You may be wondering why OpenCV and Python? That is really a good question, which we address in the first chapter of this book. To summarize, OpenCV is the best open source computer vision library (BSD license—it is free for both academic and commercial use), offering more than 2,500 optimized algorithms, including state-of-the-art computer vision algorithms, and it also has machine learning and deep learning support. OpenCV is written in optimized C/C++, but it provides Python wrappers. Therefore, this library can be used in your Python programs. In this sense, Python is considered the ideal language for scientific computing because it stimulates rapid prototyping and has a lot of prebuilt libraries for every aspect of your computer vision projects.

As introduced in the previous paragraph, there are many prebuilt libraries you can use in your projects. Indeed, in this book, we use lots of them, showing you that it's really easy to install and use new libraries. Libraries such as Matplotlib, scikit-image, SciPy, dlib, face-recognition, Pillow, cvlib, Keras, TensorFlow, and Flask will be used in this book to show you the potential of the Python ecosystem. If this is the first time that you're reading about these libraries, don't worry, because we introduce hello world examples for almost all of these libraries.

This book is a complete resource for creating advanced applications with Python and OpenCV using various techniques, such as facial recognition, target tracking, augmented reality, object detection, and classification, among others. In addition, this book
explores the potential of machine learning and deep learning techniques in computer vision applications using the Python ecosystem.

It's time to dive deeper into the content of this book. We are going to introduce you to what this book covers, including a short paragraph talking about each chapter of the book. So, let's get started!

lock icon The rest of the chapter is locked
Next Section arrow right
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime