Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Data analysis with R

You're reading from   Mastering Data analysis with R Gain sharp insights into your data and solve real-world data science problems with R—from data munging to modeling and visualization

Arrow left icon
Product type Paperback
Published in Sep 2015
Publisher Packt
ISBN-13 9781783982028
Length 396 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Gergely Daróczi Gergely Daróczi
Author Profile Icon Gergely Daróczi
Gergely Daróczi
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Hello, Data! FREE CHAPTER 2. Getting Data from the Web 3. Filtering and Summarizing Data 4. Restructuring Data 5. Building Models (authored by Renata Nemeth and Gergely Toth) 6. Beyond the Linear Trend Line (authored by Renata Nemeth and Gergely Toth) 7. Unstructured Data 8. Polishing Data 9. From Big to Small Data 10. Classification and Clustering 11. Social Network Analysis of the R Ecosystem 12. Analyzing Time-series 13. Data Around Us 14. Analyzing the R Community A. References Index

Using robust methods


Fortunately, there are some robust methods for analyzing datasets, which are generally less sensitive to extreme values. These robust statistical methods have been developed since 1960, but there are some well-known related methods from even earlier, like using the median instead of the mean as a central tendency. Robust methods are often used when the underlying distribution of our data is not considered to follow the Gaussian curve, so most good old regression models do not work (see more details in the Chapter 5, Buildings Models (authored by Renata Nemeth and Gergely Toth) and the Chapter 6, Beyond the Linear Trend Line (authored by Renata Nemeth and Gergely Toth)).

Let's take the traditional linear regression example of predicting the sepal length of iris flowers based on the petal length with some missing data. For this, we will use the previously defined miris dataset:

> summary(lm(Sepal.Length ~ Petal.Length, data = miris))

Call:
lm(formula = Sepal.Length ...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime