Feature engineering in practice
Depending on the project or circumstances, the practice of feature engineering may look very different. Some large, technology-focused companies employ one or more data engineers per data scientist, which allows machine learning practitioners to focus less on data preparation and more on model building and iteration. Certain projects may rely on very small or very massive quantities of data, which may preclude or necessitate the use of deep learning methods or automated feature engineering techniques. Even projects requiring little initial feature engineering effort may suffer from the so-called “last mile problem,” which describes the tendency for costs and complexity to be disproportionally high for the small distances to be traveled for the “last mile” of distribution. Relating this concept to feature engineering implies that even if most of the work is taken care of by other teams or automation, a surprising amount of...