Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning Algorithms

You're reading from   Machine Learning Algorithms A reference guide to popular algorithms for data science and machine learning

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781785889622
Length 360 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Giuseppe Bonaccorso Giuseppe Bonaccorso
Author Profile Icon Giuseppe Bonaccorso
Giuseppe Bonaccorso
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. A Gentle Introduction to Machine Learning FREE CHAPTER 2. Important Elements in Machine Learning 3. Feature Selection and Feature Engineering 4. Linear Regression 5. Logistic Regression 6. Naive Bayes 7. Support Vector Machines 8. Decision Trees and Ensemble Learning 9. Clustering Fundamentals 10. Hierarchical Clustering 11. Introduction to Recommendation Systems 12. Introduction to Natural Language Processing 13. Topic Modeling and Sentiment Analysis in NLP 14. A Brief Introduction to Deep Learning and TensorFlow 15. Creating a Machine Learning Architecture

Summary

In this final chapter, we discussed the main elements of machine learning architecture, considering some common scenarios and the procedures that are normally employed to prevent issues and improve the global performance. None of these steps should be discarded without a careful evaluation because the success of a model is determined by the joint action of many parameter, and hyperparameters, and finding the optimal final configuration starts with considering all possible preprocessing steps.

We saw that a grid search is a powerful investigation tool and that it's often a good idea to use it together with a complete set of alternative pipelines (with or without feature unions), so as to find the best solution in the context of a global scenario. Modern personal computers are fast enough to test hundreds of combinations in a few hours, and when the datasets are...

lock icon The rest of the chapter is locked
arrow left Previous Section
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image