Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning IPython for Interactive Computing and Data Visualization, Second Edition

You're reading from   Learning IPython for Interactive Computing and Data Visualization, Second Edition Get started with Python for data analysis and numerical computing in the Jupyter notebook

Arrow left icon
Product type Paperback
Published in Oct 2015
Publisher
ISBN-13 9781783986989
Length 200 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Cyrille Rossant Cyrille Rossant
Author Profile Icon Cyrille Rossant
Cyrille Rossant
Arrow right icon
View More author details
Toc

Summary

In this chapter, we covered the basics of data analysis with pandas: loading a dataset, selecting rows and columns, grouping and aggregating quantities, and performing complex operations efficiently.

The next natural step is to conduct statistical analyses: hypothesis testing, modeling, predictions, and so on. Several Python libraries provide such functionality beyond pandas: SciPy, statsmodels, PyMC, and more. The IPython Cookbook contains many advanced examples of such analyses.

In the next chapter, we will introduce NumPy, the library underlying the entire SciPy ecosystem.

You have been reading a chapter from
Learning IPython for Interactive Computing and Data Visualization, Second Edition
Published in: Oct 2015
Publisher:
ISBN-13: 9781783986989
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime