Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Introduction to R for Business Intelligence

You're reading from   Introduction to R for Business Intelligence Profit optimization using data mining, data analysis, and Business Intelligence

Arrow left icon
Product type Paperback
Published in Aug 2016
Publisher Packt
ISBN-13 9781785280252
Length 228 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Jay Gendron Jay Gendron
Author Profile Icon Jay Gendron
Jay Gendron
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Extract, Transform, and Load FREE CHAPTER 2. Data Cleaning 3. Exploratory Data Analysis 4. Linear Regression for Business 5. Data Mining with Cluster Analysis 6. Time Series Analysis 7. Visualizing the Datas Story 8. Web Dashboards with Shiny A. References
B. Other Helpful R Functions C. R Packages Used in the Book
D. R Code for Supporting Market Segment Business Case Calculations

Conventions

In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "You can load the Bike Sharing data file into the R environment by using the read.csv() function."

A block of code is set as follows:

bike$holiday <- factor(bike$holiday, levels = c(0, 1),
                       labels = c("no", "yes"))
bike$workingday <- factor(bike$workingday, levels = c(0, 1),
                          labels = c("no", "yes"))

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

query <- "SELECT * FROM marketing" 
bike <- sqlQuery(connection, query) 
close(connection)

Any command-line input or output is written as follows:

[1] TRUE

New terms and important words are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: "RStudio will automatically create a ui.R and server.R file, if you create a new project and choose New Directory and Shiny Web Application as the type."

Note

Warnings or important notes appear in a box like this.

Tip

Tips and tricks appear like this.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image