Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Meta Learning with Python

You're reading from   Hands-On Meta Learning with Python Meta learning using one-shot learning, MAML, Reptile, and Meta-SGD with TensorFlow

Arrow left icon
Product type Paperback
Published in Dec 2018
Publisher Packt
ISBN-13 9781789534207
Length 226 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Sudharsan Ravichandiran Sudharsan Ravichandiran
Author Profile Icon Sudharsan Ravichandiran
Sudharsan Ravichandiran
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Introduction to Meta Learning 2. Face and Audio Recognition Using Siamese Networks FREE CHAPTER 3. Prototypical Networks and Their Variants 4. Relation and Matching Networks Using TensorFlow 5. Memory-Augmented Neural Networks 6. MAML and Its Variants 7. Meta-SGD and Reptile 8. Gradient Agreement as an Optimization Objective 9. Recent Advancements and Next Steps 10. Assessments 11. Other Books You May Enjoy

Meta-SGD


Let's say we have some task, T. We use a model,

, parameterized by some parameter,

, and train the model to minimize the loss. We minimize the loss using gradient descent and find the optimal parameter

for the model.

Let's recall the update rule of a gradient descent:

So, what are the key elements that make up our gradient descent? Let's see:

  • Parameter
  • Learning rate
  • Update direction

We usually set the parameter

to some random value and try to find the optimal value during our training process, and we set the value of learning rate

to a small number or decay it over time and an update direction that follows the gradient. Can we learn all of these key elements of the gradient descent by meta learning so that we can learn quickly from a few data points? We've already seen, in the last chapter, how MAML finds the optimal initial parameter

that's generalizable across tasks. With the optimal initial parameter, we can take fewer gradient steps and learn quickly on a new task.

So, now can...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image