- Meta learning produces a versatile AI model that can learn to perform various tasks without having to be trained from scratch. We train our meta learning model on various related tasks with a few data points, so for a new but related task, the model can make use of what it learned from the previous tasks without having to be trained from scratch.Â
- Learning from fewer data points is called few-shot learning or k-shot learning, where k denotes the number of data points in each of the classes in the dataset.
- In order to make our model learn from a few data points, we will train it in the same way. So, when we have a dataset D, we sample some data points from each of the classes present in our dataset and we call it the support set.Â
- We sample different data points from each of the classes that...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand