Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Automated Machine Learning

You're reading from   Hands-On Automated Machine Learning A beginner's guide to building automated machine learning systems using AutoML and Python

Arrow left icon
Product type Paperback
Published in Apr 2018
Publisher Packt
ISBN-13 9781788629898
Length 282 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Umit Mert Cakmak Umit Mert Cakmak
Author Profile Icon Umit Mert Cakmak
Umit Mert Cakmak
Sibanjan Das Sibanjan Das
Author Profile Icon Sibanjan Das
Sibanjan Das
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Introduction to AutoML 2. Introduction to Machine Learning Using Python FREE CHAPTER 3. Data Preprocessing 4. Automated Algorithm Selection 5. Hyperparameter Optimization 6. Creating AutoML Pipelines 7. Dive into Deep Learning 8. Critical Aspects of ML and Data Science Projects 9. Other Books You May Enjoy

Trade-offs in machine learning

There are mainly two aspects to consider:

  • Training time
  • Scoring time

Both will act as constraints as you are developing your pipelines.

Let's think about the limitations that training and scoring time bring to the table. Requirements for training time will usually determine the algorithms that you will include in your candidate list. For example, logistic regression and Support Vector Machines (SVMs) are fast-to-train algorithms, and this might be important to you, especially if you are prototyping ideas quickly using big data. They are also fast when it comes to scoring. There are different implementations for both, and also different options are available for solvers, which make these two convenient for many ML use cases.

However, for something like a deep neural network, training and scoring time are very limiting constraints as you may...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime