Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Artificial Intelligence for Banking

You're reading from   Hands-On Artificial Intelligence for Banking A practical guide to building intelligent financial applications using machine learning techniques

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781788830782
Length 240 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Subhash Shah Subhash Shah
Author Profile Icon Subhash Shah
Subhash Shah
Jeffrey Ng Jeffrey Ng
Author Profile Icon Jeffrey Ng
Jeffrey Ng
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Section 1: Quick Review of AI in the Finance Industry
2. The Importance of AI in Banking FREE CHAPTER 3. Section 2: Machine Learning Algorithms and Hands-on Examples
4. Time Series Analysis 5. Using Features and Reinforcement Learning to Automate Bank Financing 6. Mechanizing Capital Market Decisions 7. Predicting the Future of Investment Bankers 8. Automated Portfolio Management Using Treynor-Black Model and ResNet 9. Sensing Market Sentiment for Algorithmic Marketing at Sell Side 10. Building Personal Wealth Advisers with Bank APIs 11. Mass Customization of Client Lifetime Wealth 12. Real-World Considerations 13. Other Books You May Enjoy

AI modeling techniques

In this section, we will look at two important modeling techniques, known as linear optimization and the linear regressionmodel. In the previous chapter, we learned about deep learning, neural networks, decision trees, and reinforcement learning.

Linear optimization

Used frequently in supply chain businesses, the linear optimization model seeks to achieve the optimization objective (that is, to maximize profit or minimize cost) by changing some variables while considering some constraints. In the case of linear optimization, we also implement the structure similar to that of the capital structure optimization process.

This is not a machine learning model as we do not need to train the machine to learn any patterns.

The linear regression model

This is typically known as the regression model. What it does is find out the causation of some factors of the outcome. The outcome has to be numeric values. In statistics, some...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image