Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hadoop Real-World Solutions Cookbook- Second Edition

You're reading from   Hadoop Real-World Solutions Cookbook- Second Edition Over 90 hands-on recipes to help you learn and master the intricacies of Apache Hadoop 2.X, YARN, Hive, Pig, Oozie, Flume, Sqoop, Apache Spark, and Mahout

Arrow left icon
Product type Paperback
Published in Mar 2016
Publisher
ISBN-13 9781784395506
Length 290 pages
Edition 2nd Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Tanmay Deshpande Tanmay Deshpande
Author Profile Icon Tanmay Deshpande
Tanmay Deshpande
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Getting Started with Hadoop 2.X FREE CHAPTER 2. Exploring HDFS 3. Mastering Map Reduce Programs 4. Data Analysis Using Hive, Pig, and Hbase 5. Advanced Data Analysis Using Hive 6. Data Import/Export Using Sqoop and Flume 7. Automation of Hadoop Tasks Using Oozie 8. Machine Learning and Predictive Analytics Using Mahout and R 9. Integration with Apache Spark 10. Hadoop Use Cases Index

Executing the balancer command for uniform data distribution

Data in HDFS may not always be placed uniformly. There can be numerous reasons for this. One of the major reasons is the addition of new nodes to the cluster. In such a case, it's the Hadoop administrator's job to make sure that they execute the balancer command to rebalance the data load.

Getting ready

To perform this recipe, you should have performed earlier recipes.

How to do it...

In the previous recipe, we added a new node to the cluster while the other three nodes were already part of the cluster. When you execute the dfsadmin report command, you would have noticed that the data is not uniformly balanced because of the addition of a new node. In my case, here is the state of the new node versus the old node.

This is the code for the old node:

Name: 172.31.0.9:50010 (ip-172-31-0-9.us-west-2.compute.internal)
Hostname: ip-172-31-0-9.us-west-2.compute.internal
Decommission Status : Normal
Configured Capacity: 8309932032 (7.74 GB)
DFS Used: 67551232 (64.42 MB)
Non DFS Used: 2193256448 (2.04 GB)
DFS Remaining: 6049124352 (5.63 GB)
DFS Used%: 0.81%
DFS Remaining%: 72.79%
Configured Cache Capacity: 0 (0 B)
Cache Used: 0 (0 B)
Cache Remaining: 0 (0 B)
Cache Used%: 100.00%
Cache Remaining%: 0.00%
Xceivers: 1
Last contact: Thu Oct 08 08:57:23 UTC 2015

This is the code for the new node:

Name: 172.31.18.55:50010 (ip-172-31-18-55.us-west-2.compute.internal)
Hostname: ip-172-31-18-55.us-west-2.compute.internal
Decommission Status : Normal
Configured Capacity: 8309932032 (7.74 GB)
DFS Used: 1127585 (1.08 MB)
Non DFS Used: 2372033375 (2.21 GB)
DFS Remaining: 5936771072 (5.53 GB)
DFS Used%: 0.01%
DFS Remaining%: 71.44%
Configured Cache Capacity: 0 (0 B)
Cache Used: 0 (0 B)
Cache Remaining: 0 (0 B)
Cache Used%: 100.00%
Cache Remaining%: 0.00%
Xceivers: 1
Last contact: Thu Oct 08 08:57:25 UTC 2015

This means that the load on the cluster is not uniform. In this case, we can execute the balancer command to distribute the data uniformly throughout the data nodes:

hdfs balancer

This will initiate the block balancing activity across the cluster. By default, it will run the balancing activity to make sure that the block storage in the nodes does not differ by more than 10%. You can also decide on the threshold limit by setting an optional parameter called threshold:

hdfs balancer -threshold 5

This will execute the balancer command with 5% threshold. This is how the sample execution looks:

How to do it...

How it works...

The balancer command provides instructions to namenode so that it can rebalance the data uniformly across datanode. This balancing is done by repositioning the blocks placed in datanode. So, if a data node is over utilized, some the blocks from that node would be repositioned to the node that is underutilized.

There's more...

There are some options you can provide as arguments to this command:

Usage: hdfs balancer
        [-policy <policy>]      the balancing policy: datanode or blockpool
        [-threshold <threshold>]        Percentage of disk capacity
        [-exclude [-f <hosts-file> | <comma-separated list of hosts>]]  Excludes the specified datanodes.
        [-include [-f <hosts-file> | <comma-separated list of hosts>]]  Includes only the specified datanodes.
        [-idleiterations <idleiterations>]      Number of consecutive idle iterations (-1 for Infinite) before exit.
You have been reading a chapter from
Hadoop Real-World Solutions Cookbook- Second Edition - Second Edition
Published in: Mar 2016
Publisher:
ISBN-13: 9781784395506
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image