Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Getting Started with Google BERT

You're reading from   Getting Started with Google BERT Build and train state-of-the-art natural language processing models using BERT

Arrow left icon
Product type Paperback
Published in Jan 2021
Publisher Packt
ISBN-13 9781838821593
Length 352 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Sudharsan Ravichandiran Sudharsan Ravichandiran
Author Profile Icon Sudharsan Ravichandiran
Sudharsan Ravichandiran
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1 - Starting Off with BERT
2. A Primer on Transformers FREE CHAPTER 3. Understanding the BERT Model 4. Getting Hands-On with BERT 5. Section 2 - Exploring BERT Variants
6. BERT Variants I - ALBERT, RoBERTa, ELECTRA, and SpanBERT 7. BERT Variants II - Based on Knowledge Distillation 8. Section 3 - Applications of BERT
9. Exploring BERTSUM for Text Summarization 10. Applying BERT to Other Languages 11. Exploring Sentence and Domain-Specific BERT 12. Working with VideoBERT, BART, and More 13. Assessments 14. Other Books You May Enjoy

How multilingual is multilingual BERT?

In the previous section, we learned about M-BERT. We learned that M-BERT is trained on the Wikipedia text of 104 different languages. We also evaluated M-BERT by fine-tuning it on the XNLI dataset. But how multilingual is our M-BERT? How is a single model able to transfer knowledge across multiple languages? To understand this, in this section, let's investigate the multilingual ability of M-BERT in more detail.

Effect of vocabulary overlap

We learned that M-BERT is trained on the Wikipedia text of 104 languages and that it consists of a shared vocabulary of 110k tokens. In this section, let's investigate whether the multilingual knowledge transfer of M-BERT depends on the vocabulary overlap.

We learned that M-BERT is good at zero-shot transfer, that is, we can fine-tune M-BERT in one language and use the fine-tuned M-BERT model in other languages. Let's say we are performing an NER task. Suppose we fine-tune M-BERT for the NER task...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime