Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Processing with Optimus

You're reading from   Data Processing with Optimus Supercharge big data preparation tasks for analytics and machine learning with Optimus using Dask and PySpark

Arrow left icon
Product type Paperback
Published in Sep 2021
Publisher Packt
ISBN-13 9781801079563
Length 300 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (2):
Arrow left icon
Dr. Argenis Leon Dr. Argenis Leon
Author Profile Icon Dr. Argenis Leon
Dr. Argenis Leon
Luis Aguirre Contreras Luis Aguirre Contreras
Author Profile Icon Luis Aguirre Contreras
Luis Aguirre Contreras
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Section 1: Getting Started with Optimus
2. Chapter 1: Hi Optimus! FREE CHAPTER 3. Chapter 2: Data Loading, Saving, and File Formats 4. Section 2: Optimus – Transform and Rollout
5. Chapter 3: Data Wrangling 6. Chapter 4: Combining, Reshaping, and Aggregating Data 7. Chapter 5: Data Visualization and Profiling 8. Chapter 6: String Clustering 9. Chapter 7: Feature Engineering 10. Section 3: Advanced Features of Optimus
11. Chapter 8: Machine Learning 12. Chapter 9: Natural Language Processing 13. Chapter 10: Hacking Optimus 14. Chapter 11: Optimus as a Web Service 15. Other Books You May Enjoy

Training models in Optimus

Now that we know how the test/train, split, and cross-validation processes work, let me tell you something amazing. You don't have to struggle with configuring and writing code to make this process work, as Optimus will do the heavy lifting for you.

Let's see the ML models available in Optimus.

Linear regression

Linear regression is a supervised ML algorithm that is useful for finding out how variables are linked to each other. By assigning a linear equation to the data that we have, we can use fresh data and predict the output, as illustrated in the following diagram:

Figure 8.4 – A line approximated to a cluster of points

In the preceding diagram, we can see a line that approximates a cluster of points. Let's see how to calculate this approximation.

First, let's start by creating a dataset with the following code:

import numpy as np 
size = 10000 
data = {&...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image