Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Computer Vision Projects with OpenCV and Python 3

You're reading from   Computer Vision Projects with OpenCV and Python 3 Six end-to-end projects built using machine learning with OpenCV, Python, and TensorFlow

Arrow left icon
Product type Paperback
Published in Dec 2018
Publisher Packt
ISBN-13 9781789954555
Length 182 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Matthew Rever Matthew Rever
Author Profile Icon Matthew Rever
Matthew Rever
Arrow right icon
View More author details
Toc

Table of Contents (9) Chapters Close

Preface 1. Setting Up an Anaconda Environment FREE CHAPTER 2. Image Captioning with TensorFlow 3. Reading License Plates with OpenCV 4. Human Pose Estimation with TensorFlow 5. Handwritten Digit Recognition with scikit-learn and TensorFlow 6. Facial Feature Tracking and Classification with dlib 7. Deep Learning Image Classification with TensorFlow 8. Other Books You May Enjoy

Finding and reading license plates with OpenCV

We have already found our characters, which are license plate candidates. Now we need to determine which characters match, so that we can extract the text data and map the characters within the license plates.

First, we run each plate candidate through our gray_thresh_img function, which does our de-noising and binarization. In this case, we get a cleaner output because we are using a sub-image and not the complete image.

This is the extraction code we will use:

for plate_candidate in plate_candidates: 

plate_candidate.grayimg, plate_candidate.thesholded = \
gray_thresh_img(plate_candidate.plate_im)
plate_candidate.thesholded = cv2.resize(plate_candidate.thesholded,
(0, 0), fx = 1.6, fy = 1.6)
thresholdValue, plate_candidate.thesholded = \
...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image