Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Causal Inference and Discovery in Python

You're reading from   Causal Inference and Discovery in Python Unlock the secrets of modern causal machine learning with DoWhy, EconML, PyTorch and more

Arrow left icon
Product type Paperback
Published in May 2023
Publisher Packt
ISBN-13 9781804612989
Length 456 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Aleksander Molak Aleksander Molak
Author Profile Icon Aleksander Molak
Aleksander Molak
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Part 1: Causality – an Introduction
2. Chapter 1: Causality – Hey, We Have Machine Learning, So Why Even Bother? FREE CHAPTER 3. Chapter 2: Judea Pearl and the Ladder of Causation 4. Chapter 3: Regression, Observations, and Interventions 5. Chapter 4: Graphical Models 6. Chapter 5: Forks, Chains, and Immoralities 7. Part 2: Causal Inference
8. Chapter 6: Nodes, Edges, and Statistical (In)dependence 9. Chapter 7: The Four-Step Process of Causal Inference 10. Chapter 8: Causal Models – Assumptions and Challenges 11. Chapter 9: Causal Inference and Machine Learning – from Matching to Meta-Learners 12. Chapter 10: Causal Inference and Machine Learning – Advanced Estimators, Experiments, Evaluations, and More 13. Chapter 11: Causal Inference and Machine Learning – Deep Learning, NLP, and Beyond 14. Part 3: Causal Discovery
15. Chapter 12: Can I Have a Causal Graph, Please? 16. Chapter 13: Causal Discovery and Machine Learning – from Assumptions to Applications 17. Chapter 14: Causal Discovery and Machine Learning – Advanced Deep Learning and Beyond 18. Chapter 15: Epilogue 19. Index 20. Other Books You May Enjoy

Preface

I wrote this book with a purpose in mind.

My journey to practical causality was an exciting but also challenging road.

Going from great theoretical books to implementing models in practice, and from translating assumptions to verifying them in real-world scenarios, demanded significant work.

I could not find unified, comprehensive resources that could be my guide through this journey.

This book is intended to be that guide.

This book provides a map that allows you to break into the world of causality.

We start with basic motivations behind causal thinking and a comprehensive introduction to Pearlian causal concepts: structural causal model, interventions, counterfactuals, and more.

Each concept comes with a theoretical explanation and a set of practical exercises accompanied by Python code.

Next, we dive into the world of causal effect estimation. Starting simple, we consistently progress toward modern machine learning methods. Step by step, we introduce the Python causal ecosystem and harness the power of cutting-edge algorithms.

In the last part of the book, we sneak into the secret world of causal discovery. We explore the mechanics of how causes leave traces and compare the main families of causal discovery algorithms to unravel the potential of end-to-end causal discovery and human-in-the-loop learning.

We close the book with a broad outlook into the future of causal AI. We examine challenges and opportunities and provide you with a comprehensive list of resources to learn more.

lock icon The rest of the chapter is locked
Next Section arrow right
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime