Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Big Data Analysis with Python

You're reading from   Big Data Analysis with Python Combine Spark and Python to unlock the powers of parallel computing and machine learning

Arrow left icon
Product type Paperback
Published in Apr 2019
Publisher Packt
ISBN-13 9781789955286
Length 276 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Authors (3):
Arrow left icon
Ivan Marin Ivan Marin
Author Profile Icon Ivan Marin
Ivan Marin
Sarang VK Sarang VK
Author Profile Icon Sarang VK
Sarang VK
Ankit Shukla Ankit Shukla
Author Profile Icon Ankit Shukla
Ankit Shukla
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Big Data Analysis with Python
Preface
1. The Python Data Science Stack 2. Statistical Visualizations FREE CHAPTER 3. Working with Big Data Frameworks 4. Diving Deeper with Spark 5. Handling Missing Values and Correlation Analysis 6. Exploratory Data Analysis 7. Reproducibility in Big Data Analysis 8. Creating a Full Analysis Report Appendix

Missing Values


The data entries with no value assigned to them are called missing values. In the real world, encountering missing values in data is common. Values may be missing for a wide variety of reasons, such as non-responsiveness of the system/responder, data corruption, and partial deletion.

Some fields are more likely than other fields to contain missing values. For example, income data collected from surveys is likely to contain missing values, because of people not wanting to disclose their income.

Nevertheless, it is one of the major problems plaguing the data analytics world. Depending on the percentage of missing data, missing values may prove to be a significant challenge in data preparation and exploratory analysis. So, it's important to calculate the missing data percentage before getting started with data analysis.

In the following exercise, we will learn how to detect and calculate the number of missing value entries in PySpark DataFrames.

Exercise 38: Counting Missing Values...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime