Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Applied Unsupervised Learning with R

You're reading from   Applied Unsupervised Learning with R Uncover hidden relationships and patterns with k-means clustering, hierarchical clustering, and PCA

Arrow left icon
Product type Paperback
Published in Mar 2019
Publisher
ISBN-13 9781789956399
Length 320 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Bradford Tuckfield Bradford Tuckfield
Author Profile Icon Bradford Tuckfield
Bradford Tuckfield
Alok Malik Alok Malik
Author Profile Icon Alok Malik
Alok Malik
Arrow right icon
View More author details
Toc

Introduction to Kernel Density Estimation


So far, we've studied parametric distributions in this chapter, but in real life, all distributions are either approximations of parametric distributions or don't resemble any parametric distributions at all. In such cases, we use a technique called Kernel Density Estimation, or KDE, to estimate their probability distributions.

KDE is used to estimate the probability density function of distributions or random variables with given finite points of that distribution using something called a kernel. This will be more clear to you after you continue further in the chapter.

KDE Algorithm

Contrary to what it might seem like given the heavy name, KDE is a very simple two-step process:

  1. Choosing a kernel

  2. Placing the kernel on data points and taking the sum of kernels

A kernel is a non-negative symmetric function that is used to model distributions. For example, in KDE, a normal distribution function is the most commonly used kernel function. Kernel functions...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image