Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
15 Math Concepts Every Data Scientist Should Know

You're reading from   15 Math Concepts Every Data Scientist Should Know Understand and learn how to apply the math behind data science algorithms

Arrow left icon
Product type Paperback
Published in Aug 2024
Publisher Packt
ISBN-13 9781837634187
Length 510 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
David Hoyle David Hoyle
Author Profile Icon David Hoyle
David Hoyle
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Part 1: Essential Concepts FREE CHAPTER
2. Chapter 1: Recap of Mathematical Notation and Terminology 3. Chapter 2: Random Variables and Probability Distributions 4. Chapter 3: Matrices and Linear Algebra 5. Chapter 4: Loss Functions and Optimization 6. Chapter 5: Probabilistic Modeling 7. Part 2: Intermediate Concepts
8. Chapter 6: Time Series and Forecasting 9. Chapter 7: Hypothesis Testing 10. Chapter 8: Model Complexity 11. Chapter 9: Function Decomposition 12. Chapter 10: Network Analysis 13. Part 3: Selected Advanced Concepts
14. Chapter 11: Dynamical Systems 15. Chapter 12: Kernel Methods 16. Chapter 13: Information Theory 17. Chapter 14: Non-Parametric Bayesian Methods 18. Chapter 15: Random Matrices 19. Index 20. Other Books You May Enjoy

The discrete Fourier transform

Having learned about Fourier series and Fourier transforms, it seems we have strayed a bit from the path of data science. Where are the data aspects of all of this? Fourier series and Fourier transforms are about decomposing functions, not data. Yes, it is useful to be able to decompose and reconstruct a function, but what happens if we don’t have the exact mathematical equation of our function and only have data points taken from the function? Is there a Fourier-like decomposition that works with data, not mathematical expressions? This is where the DFT comes in.

Often, we only have observations from a function, say the value of the function, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>f</mml:mi><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:math>, taken at regularly spaced intervals. In this case, we would have the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>N</mml:mi></mml:math> observations taken at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>x</mml:mi></mml:math> values, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>x</mi><mn>0</mn></msub><mo>,</mo><msub><mi>x</mi><mn>1</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>x</mi><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></mrow></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>x</mi><mn>0</mn></msub><mo>,</mo><msub><mi>x</mi><mn>1</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>x</mi><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></mrow></math>, with corresponding function values, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>f</mi><mn>0</mn></msub><mo>,</mo><msub><mi>f</mi><mn>1</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>f</mi><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></mrow></math>. Without loss of generality, we can assume the spacing between the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>x</mml:mi></mml:math> values is 1 as we can simply rescale the X-axis if not. This means our <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>x</mml:mi></mml:math> values are <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mn>0,1</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mo>…</mml:mo><mml:mo>,</mml:mo><mml:mi>N</mml:mi><mml:mo>-</mml:mo><mml:mn>1</mml:mn></mml:math>. We’...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image