Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
15 Math Concepts Every Data Scientist Should Know

You're reading from   15 Math Concepts Every Data Scientist Should Know Understand and learn how to apply the math behind data science algorithms

Arrow left icon
Product type Paperback
Published in Aug 2024
Publisher Packt
ISBN-13 9781837634187
Length 510 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
David Hoyle David Hoyle
Author Profile Icon David Hoyle
David Hoyle
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Part 1: Essential Concepts FREE CHAPTER
2. Chapter 1: Recap of Mathematical Notation and Terminology 3. Chapter 2: Random Variables and Probability Distributions 4. Chapter 3: Matrices and Linear Algebra 5. Chapter 4: Loss Functions and Optimization 6. Chapter 5: Probabilistic Modeling 7. Part 2: Intermediate Concepts
8. Chapter 6: Time Series and Forecasting 9. Chapter 7: Hypothesis Testing 10. Chapter 8: Model Complexity 11. Chapter 9: Function Decomposition 12. Chapter 10: Network Analysis 13. Part 3: Selected Advanced Concepts
14. Chapter 11: Dynamical Systems 15. Chapter 12: Kernel Methods 16. Chapter 13: Information Theory 17. Chapter 14: Non-Parametric Bayesian Methods 18. Chapter 15: Random Matrices 19. Index 20. Other Books You May Enjoy

Exercises

Here is a series of exercises. The answers to all the exercises are given in the Answers_to_Exercises_Chap6.ipynb Jupyter notebook in the GitHub repository.

  1. For the AR(1) process defined by the following equation,

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow><mrow><msub><mi>y</mi><mi>t</mi></msub><mo>=</mo><mi>ϕ</mi><msub><mi>y</mi><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>+</mo><msub><mi>ε</mi><mi>t</mi></msub><msub><mi>ε</mi><mi>t</mi></msub><mo>~</mo><mtext>Normal</mtext><mfenced open="(" close=")"><mrow><mn>0</mn><mo>,</mo><msup><mi>σ</mi><mn>2</mn></msup></mrow></mfenced></mrow></mrow></math>

Eq. 35

show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi mathvariant="double-struck">E</mi><mfenced open="(" close=")"><msub><mi>y</mi><mi>t</mi></msub></mfenced><mo>→</mo><mn>0</mn></mrow></mrow></math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mtext>Var</mml:mtext><mml:mfenced separators="|"><mml:mrow><mml:msub><mml:mrow><mml:mi>y</mml:mi></mml:mrow><mml:mrow><mml:mi>t</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mfenced><mml:mo>→</mml:mo><mml:msup><mml:mrow><mml:mi>σ</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>/</mml:mo><mml:mfenced separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>-</mml:mo><mml:msup><mml:mrow><mml:mi>ϕ</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:mfenced></mml:math> as <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>t</mml:mi><mml:mo>→</mml:mo><mml:mi>∞</mml:mi></mml:math>, for any starting value <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi>y</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub></mml:math>. For this exercise you can assume that <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mn>0</mn><mo><</mo><mi>ϕ</mi><mo><</mo><mn>1</mn></mrow></mrow></math>.

2. For the AR(1) process defined by the following equation,

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow><mrow><msub><mi>y</mi><mi>t</mi></msub><mo>=</mo><mfenced open="(" close=")"><mrow><mn>1</mn><mo>−</mo><mi>ϕ</mi></mrow></mfenced><mi>μ</mi><mo>+</mo><mi>ϕ</mi><msub><mi>y</mi><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>+</mo><msub><mi>ε</mi><mi>t</mi></msub><msub><mi>ε</mi><mi>t</mi></msub><mo>~</mo><mtext>Normal</mtext><mfenced open="(" close=")"><mrow><mn>0</mn><mo>,</mo><msup><mi>σ</mi><mn>2</mn></msup></mrow></mfenced></mrow></mrow></math>

Eq. 36

show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi mathvariant="double-struck">E</mi><mfenced open="(" close=")"><msub><mi>y</mi><mi>t</mi></msub></mfenced><mo>→</mo><mi>μ</mi></mrow></mrow></math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mtext>Var</mml:mtext><mml:mfenced separators="|"><mml:mrow><mml:msub><mml:mrow><mml:mi>y</mml:mi></mml:mrow><mml:mrow><mml:mi>t</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mfenced><mml:mo>→</mml:mo><mml:msup><mml:mrow><mml:mi>σ</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>/</mml:mo><mml:mfenced separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>-</mml:mo><mml:msup><mml:mrow><mml:mi>ϕ</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:mfenced></mml:math> as <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>t</mml:mi><mml:mo>→</mml:mo><mml:mi>∞</mml:mi></mml:math>, for any starting value <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi>y</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub></mml:math>. For this exercise, you can assume that <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mn>0</mn><mo><</mo><mi>ϕ</mi><mo><</mo><mn>1</mn></mrow></mrow></math>. See if you can derive the values of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi mathvariant="double-struck">E</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:msub><mml:mrow><mml:mi>y</mml:mi></mml:mrow><mml:mrow><mml:mi>t</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mfenced></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mtext>Var</mml:mtext><mml:mfenced separators="|"><mml:mrow><mml:msub><mml:mrow><mml:mi>y</mml:mi></mml:mrow><mml:mrow><mml:mi>t</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mfenced></mml:math> for any value of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>t</mml:mi></mml:math>, not just the asymptotically limiting values.

3. Use the ARIMA model form in Eq. 28 to generate a sample time series of length <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>T</mml:mi><mml:mo>=</mml:mo><mml:mn>500</mml:mn></mml:math> timepoints, that is of order <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>p</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mi>d</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mi>q</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:math>, with coefficients <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>ϕ</mi><mn>1</mn></msub><mo>=</mo><mn>0.6</mn><mo>,</mo><msub><mi>θ</mi><mn>1</mn></msub><mo>=</mo><mn>0.7</mn></mrow></mrow></math>. The noise values should be i.i.d. <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mtext>Normal</mml:mtext><mml:mfenced separators="|"><mml:mrow><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:msup><mml:mrow><mml:mn>0.1</mml:mn></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:mfenced></mml:math>. You can set the first value, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi>y</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub></mml:math>, of the generated series to zero. Use the statsmodels.tsa.arima.model.ARIMA function from the statsmodels package to fit an ARIMA(1,1,1) model to the simulated data you have just generated...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image