Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Unity 2017 Game AI Programming - Third Edition

You're reading from   Unity 2017 Game AI Programming - Third Edition Leverage the power of Artificial Intelligence to program smart entities for your games

Arrow left icon
Product type Paperback
Published in Jan 2018
Publisher Packt
ISBN-13 9781788477901
Length 254 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Raymundo Barrera Raymundo Barrera
Author Profile Icon Raymundo Barrera
Raymundo Barrera
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. The Basics of AI in Games FREE CHAPTER 2. Finite State Machines and You 3. Implementing Sensors 4. Finding Your Way 5. Flocks and Crowds 6. Behavior Trees 7. Using Fuzzy Logic to Make Your AI Seem Alive 8. How It All Comes Together 9. Other Books You May Enjoy

Neural Networks

After years and years of research and development, AI is a rapidly expanding field. As consumer-level computer hardware becomes more and more powerful, developers are finding new and exciting ways to implement ever complex forms of AI in all kinds of applications. One such AI concept is Neural Networks, a subset of machine learning that we mentioned in the previous section. Neural Networks enable computers to "learn", and through repeated training become more and more efficient and effective at solving any number of problems. A very popular exercise for testing Neural Network machine learning is teaching an AI how to discern the value of a set of handwritten numbers.

In what we call supervised learning, we provide our Neural Network a set of training data. In the handwritten number scenario, we pass in hundreds or thousands of images collected from any source containing handwritten numbers. Using a process called back propagation, the network can adjust itself with the values and data it just "learned" to create a more accurate prediction in the next iteration of the learning cycle.

Believe it or not, the concept of Neural Networks has been around since the 1940s, with the first implementation happening in the early 1950s. The concept is fairly straightforward at a high level—a series of nodes, called neurons, are connected to one another via their axons, or connectors. If these terms sound familiar, it's because they were borrowed from brain cell structures with the same names, and in some ways, similar functions.

Layers of these networks are connected to one another. Generally, there is an input layer, a hidden layer, and an output layer. This structure is represented by the following diagram:

A basic neural net structure

The input, which represents the data the agent is taking in, such as images, audio, or anything else, is passed through a hidden layer, which converts the data into something the program can use and then sends that data through to the output layer for final processing.

In neural net machine learning, not all input is equal; at least, it shouldn't be. Input is weighed before being passed into the hidden layer. While it's generally okay to start with equal weights, the program can then self-adjust those weights through each iteration using back propagation. Put simply, weights are how likely the input data is to be useful in the prediction.

After many iterations of training, the AI will then be able to tackle brand new data sets, even if it has never encountered them before! While the use for machine learning in games is still limited, the field continues to expand and is a very popular topic these days. Make sure not to miss the train and check out Machine Learning for Developers by Rodolfo Bonnin to deep dive into all things related to machine learning.

You have been reading a chapter from
Unity 2017 Game AI Programming - Third Edition - Third Edition
Published in: Jan 2018
Publisher: Packt
ISBN-13: 9781788477901
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime