Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Economics of Data, Analytics, and Digital Transformation

You're reading from   The Economics of Data, Analytics, and Digital Transformation The theorems, laws, and empowerments to guide your organization's digital transformation

Arrow left icon
Product type Paperback
Published in Nov 2020
Publisher Packt
ISBN-13 9781800561410
Length 260 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Bill Schmarzo Bill Schmarzo
Author Profile Icon Bill Schmarzo
Bill Schmarzo
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. The CEO Mandate: Become Value‑driven, Not Data-driven 2. Value Engineering: The Secret Sauce for Data Science Success FREE CHAPTER 3. A Review of Basic Economic Concepts 4. University of San Francisco Economic Value of Data Research Paper 5. The Economic Value of Data Theorems 6. The Economics of Artificial Intelligence 7. The Schmarzo Economic Digital Asset Valuation Theorem 8. The 8 Laws of Digital Transformation 9. Creating a Culture of Innovation Through Empowerment 10. Other Books You May Enjoy
11. Index
Appendix A: My Most Popular Economics of Data, Analytics, and Digital Transformation Infographics
1. Appendix B: The Economics of Data, Analytics, and Digital Transformation Cheat Sheet

Value Engineering: The Secret Sauce for Data Science Success

If we believe that the Big Data Business Model Maturity Index described in Chapter 1, The CEO Mandate: Become Value-driven, Not Data-driven, is what organizations could do to become more effective at leveraging data and analytics to power their business models, then your next question is "How can I achieve that?"

Let me introduce you to the Data Science Value Engineering Framework (see Figure 2.1).

Figure 2.1: Data Science Value Engineering Framework

The Data Science Value Engineering Framework (process) provides a simple yet effective methodology for exploiting the economic value of your data and analytic assets; a methodology to drive the collaboration between the business subject matter experts (stakeholders) and your data science team to apply data and analytics to improve the operational and business effectiveness of all industries including healthcare, public safety, manufacturing, transportation, energy, education, the environment, sports, entertainment, financial services, retail, and more.

Let's drill into each of the steps of the Data Science Value Engineering Framework—the "How to do it" framework.

You have been reading a chapter from
The Economics of Data, Analytics, and Digital Transformation
Published in: Nov 2020
Publisher: Packt
ISBN-13: 9781800561410
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime