Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
TensorFlow Machine Learning Cookbook

You're reading from   TensorFlow Machine Learning Cookbook Over 60 recipes to build intelligent machine learning systems with the power of Python

Arrow left icon
Product type Paperback
Published in Aug 2018
Publisher Packt
ISBN-13 9781789131680
Length 422 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Sujit Pal Sujit Pal
Author Profile Icon Sujit Pal
Sujit Pal
Nick McClure Nick McClure
Author Profile Icon Nick McClure
Nick McClure
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with TensorFlow FREE CHAPTER 2. The TensorFlow Way 3. Linear Regression 4. Support Vector Machines 5. Nearest-Neighbor Methods 6. Neural Networks 7. Natural Language Processing 8. Convolutional Neural Networks 9. Recurrent Neural Networks 10. Taking TensorFlow to Production 11. More with TensorFlow 12. Other Books You May Enjoy

Introduction

Nearest-neighbor methods are rooted in a distance-based conceptual idea. We consider our training set a model, and make predictions on new points based on how close they are to points in the training set. A naive method is to make the prediction class the same as the closest training data point class. But since most datasets contain a degree of noise, a more common method is to take a weighted average of a set of k-nearest-neighbors. This method is called k-nearest-neighbors (k-NN).

Given a training dataset (x1,x2.....xn) with corresponding targets (y1, y2....yn), we can make a prediction on a point, z, by looking at a set of nearest-neighbors. The actual method of prediction depends on whether we are performing regression (continuous ) or classification (discrete ).

For discrete classification targets, the prediction can be given by a maximum voting scheme, weighted...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime