Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Swift Data Structure and Algorithms

You're reading from   Swift Data Structure and Algorithms Implement Swift structures and algorithms natively

Arrow left icon
Product type Paperback
Published in Nov 2016
Publisher Packt
ISBN-13 9781785884504
Length 286 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Mario Eguiluz Alebicto Mario Eguiluz Alebicto
Author Profile Icon Mario Eguiluz Alebicto
Mario Eguiluz Alebicto
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Walking Across the Playground FREE CHAPTER 2. Working with Commonly Used Data Structures 3. Standing on the Shoulders of Giants 4. Sorting Algorithms 5. Seeing the Forest through the Tree 6. Advanced Searching Methods 7. Graph Algorithms 8. Performance and Algorithm Efficiency 9. Choosing the Perfect Algorithm

Orders of common functions

When we compare the Big-O of two algorithms, we are comparing at the end how the running time and space requirements grow depending on the input data. We need to know how the algorithm will behave with any amount of data. Let's see the orders of common functions in ascending order.

O(1)

When the running time is constant, always with the same value, we have O(1). So the algorithm space/running time is not dependent on the input data. One example is the time needed to access an item in an array with the index. It uses just one instruction (at a high level) to do it. The pop function on a stack is another example of O(1) operations. The space complexity of the insertion sort also uses just one memory register, so it is O(1).

Here is an example:

    public func firstElement(array:[Int]) -> Int? 
    {
        return array.first
    }

Here we have a very simplified function that receives an array of integers and returns the first one (if it exists). This is...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image