Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Scientific Computing with Python

You're reading from   Scientific Computing with Python High-performance scientific computing with NumPy, SciPy, and pandas

Arrow left icon
Product type Paperback
Published in Jul 2021
Publisher Packt
ISBN-13 9781838822323
Length 392 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (4):
Arrow left icon
Olivier Verdier Olivier Verdier
Author Profile Icon Olivier Verdier
Olivier Verdier
Jan Erik Solem Jan Erik Solem
Author Profile Icon Jan Erik Solem
Jan Erik Solem
Claus Führer Claus Führer
Author Profile Icon Claus Führer
Claus Führer
Claus Fuhrer Claus Fuhrer
Author Profile Icon Claus Fuhrer
Claus Fuhrer
Arrow right icon
View More author details
Toc

Table of Contents (23) Chapters Close

Preface 1. Getting Started 2. Variables and Basic Types FREE CHAPTER 3. Container Types 4. Linear Algebra - Arrays 5. Advanced Array Concepts 6. Plotting 7. Functions 8. Classes 9. Iterating 10. Series and Dataframes - Working with Pandas 11. Communication by a Graphical User Interface 12. Error and Exception Handling 13. Namespaces, Scopes, and Modules 14. Input and Output 15. Testing 16. Symbolic Computations - SymPy 17. Interacting with the Operating System 18. Python for Parallel Computing 19. Comprehensive Examples 20. About Packt 21. Other Books You May Enjoy 22. References

4.9 Linear algebra methods in SciPy

SciPy offers a large range of methods from numerical linear algebra in its module scipy.linalg. Many of these methods are Python wrapping programs from LAPACK, a collection of well-approved FORTRAN subroutines used to solve linear equation systems and eigenvalue problems, see [5]. Linear algebra methods are the core of any method in scientific computing, and the fact that SciPy uses wrappers instead of pure Python code makes these central methods extremely fast. We present in detail here how two linear algebra problems are solved with Scipy to give you a flavor of this module.

You met before some linear algebra functions taken from the module numpy.linalg. Both packages NumPy and SciPy are compatible, but Scipy has its focus on scientific computing methods and is more comprehensive, while NumPy's focus is on the array datatype and it provides only some linear algebra methods for convenience.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime