Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
SAS for Finance

You're reading from   SAS for Finance Forecasting and data analysis techniques with real-world examples to build powerful financial models

Arrow left icon
Product type Paperback
Published in May 2018
Publisher Packt
ISBN-13 9781788624565
Length 306 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Harish Gulati Harish Gulati
Author Profile Icon Harish Gulati
Harish Gulati
Arrow right icon
View More author details
Toc

Table of Contents (9) Chapters Close

Preface 1. Time Series Modeling in the Financial Industry FREE CHAPTER 2. Forecasting Stock Prices and Portfolio Decisions using Time Series 3. Credit Risk Management 4. Budget and Demand Forecasting 5. Inflation Forecasting for Financial Planning 6. Managing Customer Loyalty Using Time Series Data 7. Transforming Time Series – Market Basket and Clustering 8. Other Books You May Enjoy

Dealing with multicollinearity

The modeler still wasn't sure that the model was robust enough. He remembered that he hadn't tested the model for any effects of multicollinearity. We spoke briefly about this phenomenon when we studied the correlation of stock prices with each of the eight independent variables proposed for the regression model. The multicollinearity test was run using the tolerance and the variance inflation factor (VIF).

The PROC REG code for multicollinearity is as follows:

PROC REG DATA=build plots(only label)=(RStudentByLeverage CooksD); 
ID date; 
MODEL stock = basket_index -- m1_money_supply_index/tol vif; 
RUN;
Figure 2.18: Partial output for multicollinearity

The tolerance is computed as 1-R2. When the R2 is high, the tolerance value is very low. Such low values of tolerance are indicative of multicollinearity. The VIF is derived by taking the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image