So far, we have explored models where we have different fixed levels for each effect. This makes a lot of sense when we have a set of possible levels for an effect that we control and are interested in measuring. It also makes sense when we have a blocking effect that has a finite (and small) set values (for example, the sex or occupation of a person). In some cases, we will have a huge amount of levels that will be generally unimportant, for example, if we want to measure whether a drug is effective, and we are dealing with multiple observations per person, we want to add a blocking effect for a person. In these cases, we are not interested in the effect per se, but we certainly want to use it as a control variable for our model. A model that uses proper blocks, will be more efficient: think of ANOVA as a method of attributing variability to factors. If we have...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine