Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Network Programming Cookbook

You're reading from   Python Network Programming Cookbook Practical solutions to overcome real-world networking challenges

Arrow left icon
Product type Paperback
Published in Aug 2017
Publisher Packt
ISBN-13 9781786463999
Length 450 pages
Edition 2nd Edition
Languages
Tools
Concepts
Arrow right icon
Authors (3):
Arrow left icon
Dr. M. O. Faruque Sarker Dr. M. O. Faruque Sarker
Author Profile Icon Dr. M. O. Faruque Sarker
Dr. M. O. Faruque Sarker
Gary Berger Gary Berger
Author Profile Icon Gary Berger
Gary Berger
Pradeeban Kathiravelu Pradeeban Kathiravelu
Author Profile Icon Pradeeban Kathiravelu
Pradeeban Kathiravelu
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Sockets, IPv4, and Simple Client/Server Programming FREE CHAPTER 2. Multiplexing Socket I/O for Better Performance 3. IPv6, Unix Domain Sockets, and Network Interfaces 4. Programming with HTTP for the Internet 5. Email Protocols, FTP, and CGI Programming 6. Programming Across Machine Boundaries 7. Working with Web Services – XML-RPC, SOAP, and REST 8. Network Monitoring and Security 9. Network Modeling 10. Getting Started with SDN 11. Authentication, Authorization, and Accounting (AAA) 12. Open and Proprietary Networking Solutions 13. NFV and Orchestration – A Larger Ecosystem 14. Programming the Internet

Converting an IPv4 address to different formats

When you would like to deal with low-level network functions, sometimes, the usual string notation of IP addresses are not very useful. They need to be converted to the packed 32-bit binary formats.

How to do it...

The Python socket library has utilities to deal with the various IP address formats. Here, we will use two of them: inet_aton() and inet_ntoa().

Let us create the convert_ip4_address() function, where inet_aton() and inet_ntoa() will be used for the IP address conversion. We will use two sample IP addresses, 127.0.0.1 and 192.168.0.1.

Listing 1.3 shows ip4_address_conversion as follows:

#!/usr/bin/env python
# Python Network Programming Cookbook,
Second Edition -- Chapter - 1 # This program is optimized for Python 2.7.12 and
Python 3.5.2. # It may run on any other version with/without
modifications. import socket from binascii import hexlify def convert_ip4_address(): for ip_addr in ['127.0.0.1', '192.168.0.1']: packed_ip_addr = socket.
inet_aton(ip_addr) unpacked_ip_addr = socket.inet_ntoa
(packed_ip_addr) print ("IP Address: %s => Packed: %s,
Unpacked: %s" %(ip_addr,
hexlify(packed_ip_addr),
unpacked_ip_addr)) if __name__ == '__main__': convert_ip4_address()

Now, if you run this recipe, you will see the following output:

$ python 1_3_ip4_address_conversion.py 
IP Address: 127.0.0.1 => Packed: 7f000001, Unpacked: 
127.0.0.1
IP Address: 192.168.0.1 => Packed: c0a80001, Unpacked: 192.168.0.1

How it works...

In this recipe, the two IP addresses have been converted from a string to a 32-bit packed format using a for-in statement. Additionally, the Python hexlify function is called from the binascii module. This helps to represent the binary data in a hexadecimal format.

You have been reading a chapter from
Python Network Programming Cookbook - Second Edition
Published in: Aug 2017
Publisher: Packt
ISBN-13: 9781786463999
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime