Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Data Science Essentials

You're reading from   Python Data Science Essentials Become an efficient data science practitioner by thoroughly understanding the key concepts of Python

Arrow left icon
Product type Paperback
Published in Apr 2015
Publisher Packt
ISBN-13 9781785280429
Length 258 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Toc

Linear and logistic regression


Linear and logistic regressions are the two methods that can be used to linearly predict a target value and target class respectively. Let's start with an example of linear regression.

In this section, we will use the Boston dataset, which contains 506 samples, 13 features (all real numbers), and a (real) numerical target. We will divide our dataset into two sections by using a so-called train/test split cross-validation to test our methodology (in the example, 80 percent of our dataset goes in training, and 20 percent in the test):

In: from sklearn.datasets import load_boston
boston = load_boston()
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, test_size=0.2, random_state=0)

The dataset is now loaded and the train/test pairs have been created. In the next few steps, we're going to train and fit the regressor in the training set and predict the target variable in the test...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime