Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Practical Data Analysis
Practical Data Analysis

Practical Data Analysis: Pandas, MongoDB, Apache Spark, and more , Second Edition

Arrow left icon
Profile Icon Dr. Sampath Kumar Profile Icon Cuesta
Arrow right icon
$54.99
Full star icon Full star icon Full star icon Half star icon Empty star icon 3.5 (2 Ratings)
Paperback Sep 2016 338 pages 2nd Edition
eBook
$43.99
Paperback
$54.99
Subscription
Free Trial
Renews at $19.99p/m
Arrow left icon
Profile Icon Dr. Sampath Kumar Profile Icon Cuesta
Arrow right icon
$54.99
Full star icon Full star icon Full star icon Half star icon Empty star icon 3.5 (2 Ratings)
Paperback Sep 2016 338 pages 2nd Edition
eBook
$43.99
Paperback
$54.99
Subscription
Free Trial
Renews at $19.99p/m
eBook
$43.99
Paperback
$54.99
Subscription
Free Trial
Renews at $19.99p/m

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Table of content icon View table of contents Preview book icon Preview Book

Practical Data Analysis

Chapter 2. Preprocessing Data

Building real world data analytic solutions requires accurate data. In this chapter, we discuss how to collect, clean, normalize, and transform raw data into a standard format such as Comma-Separated Values (CSV) format or JavaScript Object Notation (JSON), using a tool to process a messy data called OpenRefine.

In this chapter, we will cover the following:

  • Data sources
  • Data scrubbing
  • Data reduction methods
  • Data formats
  • Getting started with OpenRefine

Data sources

Data source is a term for all the technology related to the extraction and storage of data. A data source can be anything from a simple text file to a big database. The raw data can come from observation logs, sensors, transactions, or user behavior.

A dataset is a collection of data, usually presented in a tabular form. Each column represents a particular attribute, and each row corresponds to a given member of the data, as is showed in the following screenshot.

Data sources

In this section, we will take a look at the most common forms for data sources and datasets.

Tip

The data in the preceding screenshot is from the classical Weather dataset of the UC Irvine Machine Learning Repository:

http://archive.ics.uci.edu/ml/

A dataset represents a logical implementation of a data source; the common features of a dataset:

  • Dataset characteristics (multivariate and univariate)
  • Number of instances
  • Area (life, business, and many more)
  • Attribute characteristics (real, categorical, and nominal)
  • Number of...

Data scrubbing

Scrubbing data, also called data cleansing, is the process of correcting or removing data in a dataset that is incorrect, inaccurate, incomplete, improperly formatted, or duplicated.

The result of the data analysis process not only depends on the algorithms, it depends on the quality of the data. That's why the next step after obtaining the data, is data scrubbing. In order to avoid dirty data, our dataset should possess the following characteristics:

  • Correct
  • Completeness
  • Accuracy
  • Consistency
  • Uniformity

Dirty data can be detected by applying some simple statistical data validation and also by parsing the texts or deleting duplicate values. Missing or sparse data can lead you to highly misleading results.

Statistical methods

In this method, we need some context about the problem (knowledge domain) to find values that are unexpected and thus erroneous, even if the data type matches but the values are out of the range. This can be resolved by setting the values to an average or...

Data sources


Data source is a term for all the technology related to the extraction and storage of data. A data source can be anything from a simple text file to a big database. The raw data can come from observation logs, sensors, transactions, or user behavior.

A dataset is a collection of data, usually presented in a tabular form. Each column represents a particular attribute, and each row corresponds to a given member of the data, as is showed in the following screenshot.

In this section, we will take a look at the most common forms for data sources and datasets.

Tip

The data in the preceding screenshot is from the classical Weather dataset of the UC Irvine Machine Learning Repository: http://archive.ics.uci.edu/ml/

A dataset represents a logical implementation of a data source; the common features of a dataset:

  • Dataset characteristics (multivariate and univariate)

  • Number of instances

  • Area (life, business, and many more)

  • Attribute characteristics (real, categorical, and nominal)

  • Number of...

Data scrubbing


Scrubbing data, also called data cleansing, is the process of correcting or removing data in a dataset that is incorrect, inaccurate, incomplete, improperly formatted, or duplicated.

The result of the data analysis process not only depends on the algorithms, it depends on the quality of the data. That's why the next step after obtaining the data, is data scrubbing. In order to avoid dirty data, our dataset should possess the following characteristics:

  • Correct

  • Completeness

  • Accuracy

  • Consistency

  • Uniformity

Dirty data can be detected by applying some simple statistical data validation and also by parsing the texts or deleting duplicate values. Missing or sparse data can lead you to highly misleading results.

Statistical methods

In this method, we need some context about the problem (knowledge domain) to find values that are unexpected and thus erroneous, even if the data type matches but the values are out of the range. This can be resolved by setting the values to an average or mean value...

Data formats


When we are working with data for human consumption, the easiest way to store it is in text files. In this section, we will present parsing examples of the most common formats such as CSV, JSON, and XML. These examples will be very helpful in the following chapters.

Tip

The dataset used for these examples is a list of Pokemon by National Pokedex number, obtained from: http://bulbapedia.bulbagarden.net/All the scripts and dataset files can be found in the author's GitHub repository: https://github.com/hmcuesta/PDA_Book/tree/master/Chapter3

CSV is a very simple and common open format for table-like data, which can be exported and imported by most of the data analysis tools. CSV is a plain text format; this means that the file is a sequence of characters, with no data that has to be interpreted instead, such as binary numbers.

There are many ways to parse a CSV file from Python, and here we will discuss two:

The first eight records of the CSV file (pokemon.csv) look like this:

 id,...

Data reduction methods


Many data scientists use large data size in volume for analysis, which takes a long time, though it is very difficult to analyze the data sometimes. In data analytics applications, if you use a large amount of data, it may produce redundant results. In order to overcome such difficulties, we can use data reduction methods.

Data reduction is the transformation of numerical or alphabetical digital information derived empirically or experimentally into a corrected, ordered, and simplified form. Reduced data size is very small in volume and comparatively original, hence, the storage efficiency will increase and at the same time we can minimize the data handling costs and will minimize the analysis time also.

We can use several types of data reduction methods, which are listed as follows:

  • Filtering and sampling

  • Binned algorithm

  • Dimensionality reduction

Filtering and sampling

In data reduction methods, filtering plays an important role. Filtering explains the process of detecting...

Left arrow icon Right arrow icon

Key benefits

  • Learn to use various data analysis tools and algorithms to classify, cluster, visualize, simulate, and forecast your data
  • Apply Machine Learning algorithms to different kinds of data such as social networks, time series, and images
  • A hands-on guide to understanding the nature of data and how to turn it into insight

Description

Beyond buzzwords like Big Data or Data Science, there are a great opportunities to innovate in many businesses using data analysis to get data-driven products. Data analysis involves asking many questions about data in order to discover insights and generate value for a product or a service. This book explains the basic data algorithms without the theoretical jargon, and you’ll get hands-on turning data into insights using machine learning techniques. We will perform data-driven innovation processing for several types of data such as text, Images, social network graphs, documents, and time series, showing you how to implement large data processing with MongoDB and Apache Spark.

Who is this book for?

This book is for developers who want to implement data analysis and data-driven algorithms in a practical way. It is also suitable for those without a background in data analysis or data processing. Basic knowledge of Python programming, statistics, and linear algebra is assumed.

What you will learn

  • Acquire, format, and visualize your data
  • Build an image-similarity search engine
  • Generate meaningful visualizations anyone can understand
  • Get started with analyzing social network graphs
  • Find out how to implement sentiment text analysis
  • Install data analysis tools such as Pandas, MongoDB, and Apache Spark
  • Get to grips with Apache Spark
  • Implement machine learning algorithms such as classification or forecasting
Estimated delivery fee Deliver to Turkey

Standard delivery 10 - 13 business days

$12.95

Premium delivery 3 - 6 business days

$34.95
(Includes tracking information)

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Sep 30, 2016
Length: 338 pages
Edition : 2nd
Language : English
ISBN-13 : 9781785289712
Category :
Languages :
Concepts :

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Estimated delivery fee Deliver to Turkey

Standard delivery 10 - 13 business days

$12.95

Premium delivery 3 - 6 business days

$34.95
(Includes tracking information)

Product Details

Publication date : Sep 30, 2016
Length: 338 pages
Edition : 2nd
Language : English
ISBN-13 : 9781785289712
Category :
Languages :
Concepts :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 160.97
Practical Data Analysis
$54.99
Practical Data Analysis Cookbook
$54.99
Practical Machine Learning
$50.99
Total $ 160.97 Stars icon

Table of Contents

15 Chapters
1. Getting Started Chevron down icon Chevron up icon
2. Preprocessing Data Chevron down icon Chevron up icon
3. Getting to Grips with Visualization Chevron down icon Chevron up icon
4. Text Classification Chevron down icon Chevron up icon
5. Similarity-Based Image Retrieval Chevron down icon Chevron up icon
6. Simulation of Stock Prices Chevron down icon Chevron up icon
7. Predicting Gold Prices Chevron down icon Chevron up icon
8. Working with Support Vector Machines Chevron down icon Chevron up icon
9. Modeling Infectious Diseases with Cellular Automata Chevron down icon Chevron up icon
10. Working with Social Graphs Chevron down icon Chevron up icon
11. Working with Twitter Data Chevron down icon Chevron up icon
12. Data Processing and Aggregation with MongoDB Chevron down icon Chevron up icon
13. Working with MapReduce Chevron down icon Chevron up icon
14. Online Data Analysis with Jupyter and Wakari Chevron down icon Chevron up icon
15. Understanding Data Processing using Apache Spark Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Half star icon Empty star icon 3.5
(2 Ratings)
5 star 50%
4 star 0%
3 star 0%
2 star 50%
1 star 0%
Jose Arturo Mora Soto Feb 10, 2018
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Becoming a data scientist is not trivial, definitely one of the firts steps is to learn how to manipulate data to obtain initial insights, I found this book a great source to start handling data with python, I really recommend this book but be aware that in order to have a better understanding you should need previous experience with python.
Amazon Verified review Amazon
Amazon Customer Oct 21, 2017
Full star icon Full star icon Empty star icon Empty star icon Empty star icon 2
The authors may be experts in data analysis but they are not doing a good job of explaining it. If you are new to data analysis, this book will get you totally confused.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact customercare@packt.com with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at customercare@packt.com using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on customercare@packt.com with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on customercare@packt.com within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on customercare@packt.com who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on customercare@packt.com within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela