Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Neural Networks with R

You're reading from   Neural Networks with R Build smart systems by implementing popular deep learning models in R

Arrow left icon
Product type Paperback
Published in Sep 2017
Publisher Packt
ISBN-13 9781788397872
Length 270 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Balaji Venkateswaran Balaji Venkateswaran
Author Profile Icon Balaji Venkateswaran
Balaji Venkateswaran
Giuseppe Ciaburro Giuseppe Ciaburro
Author Profile Icon Giuseppe Ciaburro
Giuseppe Ciaburro
Arrow right icon
View More author details
Toc

Table of Contents (8) Chapters Close

Preface 1. Neural Network and Artificial Intelligence Concepts 2. Learning Process in Neural Networks FREE CHAPTER 3. Deep Learning Using Multilayer Neural Networks 4. Perceptron Neural Network Modeling – Basic Models 5. Training and Visualizing a Neural Network in R 6. Recurrent and Convolutional Neural Networks 7. Use Cases of Neural Networks – Advanced Topics

Inspiration for neural networks

Neural networks are inspired by the way the human brain works. A human brain can process huge amounts of information using data sent by human senses (especially vision). The processing is done by neurons, which work on electrical signals passing through them and applying flip-flop logic, like opening and closing of the gates for signal to transmit through. The following images shows the structure of a neuron:


The major components of each neuron are:

  • Dendrites: Entry points in each neuron which take input from other neurons in the network in form of electrical impulses
  • Cell Body: It generates inferences from the dendrite inputs and decides what action to take
  • Axon terminals: They transmit outputs in form of electrical impulses to next neuron

Each neuron processes signals only if it exceeds a certain threshold. Neurons either fire or do not fire; it is either 0 or 1.

AI has been a domain for sci-fi movies and fiction books. ANNs within AI have been around since the 1950s, but we have made them more dominant in the past 10 years due to advances in computing architecture and performance. There have been major advancements in computer processing, leading to:

  • Massive parallelism
  • Distributed representation and computation
  • Learning and generalization ability
  • Fault tolerance
  • Low energy consumption

In the domain of numerical computations and symbol manipulation, solving problems on-top of centralized architecture, modern day computers have surpassed humans to a greater extent. Where they actually lag behind with such an organizing structure is in the domains of pattern recognition, noise reduction, and optimizing. A toddler can recognize his/her mom in a huge crowd, but a computer with a centralized architecture wouldn’t be able to do the same.

This is where the biological neural network of the brain has been outperforming machines, and hence the inspiration to develop an alternative loosely held, decentralized architecture mimicking the brain.

ANNs are massively parallel computing systems consisting of an extremely large number of simple processors with many interconnections.

One of the leading global news agencies, Guardian, used big data in digitizing the archives by uploading the snapshots of all the archives they had had. However, for a user to copy the content and use it elsewhere is the limitation here. To overcome that, one can use an ANN for text pattern recognition to convert the images to text file and then to any format according to the needs of the end-users.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image