Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Reinforcement Learning with Python

You're reading from   Mastering Reinforcement Learning with Python Build next-generation, self-learning models using reinforcement learning techniques and best practices

Arrow left icon
Product type Paperback
Published in Dec 2020
Publisher Packt
ISBN-13 9781838644147
Length 544 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Enes Bilgin Enes Bilgin
Author Profile Icon Enes Bilgin
Enes Bilgin
Arrow right icon
View More author details
Toc

Table of Contents (24) Chapters Close

Preface 1. Section 1: Reinforcement Learning Foundations
2. Chapter 1: Introduction to Reinforcement Learning FREE CHAPTER 3. Chapter 2: Multi-Armed Bandits 4. Chapter 3: Contextual Bandits 5. Chapter 4: Makings of a Markov Decision Process 6. Chapter 5: Solving the Reinforcement Learning Problem 7. Section 2: Deep Reinforcement Learning
8. Chapter 6: Deep Q-Learning at Scale 9. Chapter 7: Policy-Based Methods 10. Chapter 8: Model-Based Methods 11. Chapter 9: Multi-Agent Reinforcement Learning 12. Section 3: Advanced Topics in RL
13. Chapter 10: Introducing Machine Teaching 14. Chapter 11: Achieving Generalization and Overcoming Partial Observability 15. Chapter 12: Meta-Reinforcement Learning 16. Chapter 13: Exploring Advanced Topics 17. Section 4: Applications of RL
18. Chapter 14: Solving Robot Learning 19. Chapter 15: Supply Chain Management 20. Chapter 16: Personalization, Marketing, and Finance 21. Chapter 17: Smart City and Cybersecurity 22. Chapter 18: Challenges and Future Directions in Reinforcement Learning 23. Other Books You May Enjoy

Chapter 5: Solving the Reinforcement Learning Problem

In the previous chapter we provided the mathematical foundations for modeling a reinforcement learning problem. In this chapter, we lay the foundation for solving it. Many of the following chapters will focus on some specific solution approaches that will rise on this foundation. To this end, we first cover the dynamic programming (DP) approach, with which we introduce some key ideas and concepts. DP methods provide optimal solutions to Markov decision processes (MDPs), yet they require the complete knowledge and a compact representation of the state transition and reward dynamics of the environment. This could be severely limiting and impractical in a realistic scenario, where the agent is either directly trained in the environment itself or in a simulation of it. Monte Carlo and temporal difference (TD) approaches that we cover later, unlike DP, use sampled transitions from the environment and relax the aforementioned limitations...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime