Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Java for Data Science

You're reading from   Mastering Java for Data Science Analytics and more for production-ready applications

Arrow left icon
Product type Paperback
Published in Apr 2017
Publisher Packt
ISBN-13 9781782174271
Length 364 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Alexey Grigorev Alexey Grigorev
Author Profile Icon Alexey Grigorev
Alexey Grigorev
Arrow right icon
View More author details
Toc

Online evaluation

When we do cross-validation, we perform offline evaluation of our model, we train the model on the past data, and then hold out some of it and use it only for testing. It is very important, but often not enough, to know if the model will perform well on actual users. This is why we need to constantly monitor the performance of our models online--when the users actually use it. It can happen that a model, which is very good during offline testing, does not actually perform very well during online evaluation. There could be many reasons for that--overfitting, poor cross-validation, using the test set too often for checking the performance, and so on.

Thus, when we come up with a new model, we cannot just assume it will be better because its offline performance is better, so we need to test it on real users.

For testing models online we usually need to come up with a sensible way of measuring performance...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime