Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Graphics Programming with Vulkan

You're reading from   Mastering Graphics Programming with Vulkan Develop a modern rendering engine from first principles to state-of-the-art techniques

Arrow left icon
Product type Paperback
Published in Feb 2023
Publisher Packt
ISBN-13 9781803244792
Length 382 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Gabriel Sassone Gabriel Sassone
Author Profile Icon Gabriel Sassone
Gabriel Sassone
Marco Castorina Marco Castorina
Author Profile Icon Marco Castorina
Marco Castorina
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Part 1: Foundations of a Modern Rendering Engine
2. Chapter 1: Introducing the Raptor Engine and Hydra FREE CHAPTER 3. Chapter 2: Improving Resources Management 4. Chapter 3: Unlocking Multi-Threading 5. Chapter 4: Implementing a Frame Graph 6. Chapter 5: Unlocking Async Compute 7. Part 2: GPU-Driven Rendering
8. Chapter 6: GPU-Driven Rendering 9. Chapter 7: Rendering Many Lights with Clustered Deferred Rendering 10. Chapter 8: Adding Shadows Using Mesh Shaders 11. Chapter 9: Implementing Variable Rate Shading 12. Chapter 10: Adding Volumetric Fog 13. Part 3: Advanced Rendering Techniques
14. Chapter 11: Temporal Anti-Aliasing 15. Chapter 12: Getting Started with Ray Tracing 16. Chapter 13: Revisiting Shadows with Ray Tracing 17. Chapter 14: Adding Dynamic Diffuse Global Illumination with Ray Tracing 18. Chapter 15: Adding Reflections with Ray Tracing 19. Index 20. Other Books You May Enjoy

Summary

In this chapter, we have introduced the concept of meshlets, a construct that helps us break down large meshes into more manageable chunks and that can be used to perform occlusion computations on the GPU. We have demonstrated how to use the library of our choice (MeshOptimizer) to generate meshlets, and we also illustrated the extra data structures (cones and bounding spheres) that are useful for occlusion operations.

We introduced mesh and task shaders. Conceptually similar to compute shaders, they allow us to quickly process meshlets on the GPU. We demonstrated how to use task shaders to perform back-face and frustum culling, and how mesh shaders replace vertex shaders by processing and generating multiple primitives in parallel.

Finally, we went through the implementation of occlusion culling. We first listed the steps that compose this technique. Next, we demonstrated how to compute a depth pyramid from our existing depth buffer. Lastly, we analyzed the occlusion...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image