Human pose estimation is another area of the remarkable success of the deep neural networks and has had rapid growth in recent years. In the last few chapters, we learned that deep neural networks use a combination of linear (convolution) and nonlinear (ReLU) operations to predict the output for a given set of input images. In the case of pose estimation, the deep neural network predicts the joint locations, when given a set of input images. The labeled dataset in an image consists of a bounding box determining N persons in the image and K joints per person. As the pose changes, the orientation of the joints change, so different positions are characterized by looking into the relative position of the joints. In the following sections, we'll describe the different pose estimation methods we can use.
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine