Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Clojure

You're reading from   Mastering Clojure Understand the philosophy of the Clojure language and dive into its inner workings to unlock its advanced features, methodologies, and constructs

Arrow left icon
Product type Paperback
Published in Mar 2016
Publisher Packt
ISBN-13 9781785889745
Length 266 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Akhil Wali Akhil Wali
Author Profile Icon Akhil Wali
Akhil Wali
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Working with Sequences and Patterns FREE CHAPTER 2. Orchestrating Concurrency and Parallelism 3. Parallelization Using Reducers 4. Metaprogramming with Macros 5. Composing Transducers 6. Exploring Category Theory 7. Programming with Logic 8. Leveraging Asynchronous Tasks 9. Reactive Programming 10. Testing Your Code 11. Troubleshooting and Best Practices A. References
Index

Using monads

Finally, let's take a look at an algebraic structure that helps us build and compose a sequence of computations: a monad. There are countless tutorials and articles on the web that explain monads and how they can be used. In this section, we will look at monads in our own unique and Clojure-y way.

In category theory, a monad is a morphism between functors. This means that a monad transforms the context of a contained value into another context. In pure functional programming languages, monads are data structures used to represent computations that are defined in steps. Each step is represented by an operation on a monad, and several of these steps can be chained together. Essentially, a monad is a composable abstraction of a step of any computation. A distinct feature of monads is that they allow us to model impure side effects, which may be performed in the various steps of a given computation, using pure functions.

Monads abstract the way a function binds values to arguments...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image