Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
LLM Engineer's Handbook

You're reading from   LLM Engineer's Handbook Master the art of engineering large language models from concept to production

Arrow left icon
Product type Paperback
Published in Oct 2024
Publisher Packt
ISBN-13 9781836200079
Length 522 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Maxime Labonne Maxime Labonne
Author Profile Icon Maxime Labonne
Maxime Labonne
Paul Iusztin Paul Iusztin
Author Profile Icon Paul Iusztin
Paul Iusztin
Alex Vesa Alex Vesa
Author Profile Icon Alex Vesa
Alex Vesa
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Understanding the LLM Twin Concept and Architecture 2. Tooling and Installation FREE CHAPTER 3. Data Engineering 4. RAG Feature Pipeline 5. Supervised Fine-Tuning 6. Fine-Tuning with Preference Alignment 7. Evaluating LLMs 8. Inference Optimization 9. RAG Inference Pipeline 10. Inference Pipeline Deployment 11. MLOps and LLMOps 12. Other Books You May Enjoy
13. Index
Appendix: MLOps Principles

Model parallelism

Model parallelism allows you to distribute the memory and compute requirements of LLMs across multiple GPUs. This enables the training and inference of models too large to fit on a single device, while also improving performance in terms of throughput (tokens per second).

There are three main approaches to model parallelism, each involving splitting the model weights and computation in different ways: data parallelism, pipeline parallelism, and tensor parallelism.

Although these approaches were originally developed for training, we can reuse them for inference by focusing on the forward pass only.

Data parallelism

Data parallelism (DP) is the simplest type of model parallelism. It involves making copies of the model and distributing these replicas across different GPUs (see Figure 8.4). Each GPU processes a subset of the data simultaneously. During training, the gradients calculated on each GPU are averaged and used to update the model parameters...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image