Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learning Geospatial Analysis with Python

You're reading from   Learning Geospatial Analysis with Python If you know Python and would like to use it for Geospatial Analysis this book is exactly what you've been looking for. With an organized, user-friendly approach it covers all the bases to give you the necessary skills and know-how.

Arrow left icon
Product type Paperback
Published in Oct 2013
Publisher Packt
ISBN-13 9781783281138
Length 364 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Joel Lawhead Joel Lawhead
Author Profile Icon Joel Lawhead
Joel Lawhead
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Learning Geospatial Analysis with Python FREE CHAPTER 2. Geospatial Data 3. The Geospatial Technology Landscape 4. Geospatial Python Toolbox 5. Python and Geographic Information Systems 6. Python and Remote Sensing 7. Python and Elevation Data 8. Advanced Geospatial Python Modelling 9. Real-Time Data 10. Putting It All Together Index

Classifying images


Automated Remote Sensing (ARS) is rarely ever done in the visible spectrum. The most commonly available wavelengths outside of the visible spectrum are infrared and near-infrared. The following scene is a thermal image (band 10) from a fairly recent Landsat 8 flyover of the US Gulf Coast from New Orleans, Louisiana to Mobile, Alabama. Major natural features in the image are labeled so you can orient yourself:

Because every pixel in that image has a reflectance value, it is information. Python can "see" those values and pick out features the same way we intuitively do by grouping related pixel values. We can colorize pixels based on their relation to each other to simplify the image and view related features. This technique is called classification. Classifying can range from fairly simple groupings based only on some value distribution algorithm derived from the histogram to complex methods involving training data sets and even computer learning and artificial intelligence...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image