Background subtraction is very useful in video surveillance. Basically, the background subtraction technique performs really well in cases where we have to detect moving objects in a static scene. How is this useful for video surveillance? The process of video surveillance involves dealing with constant data flow. The data stream keeps coming in and we need to analyze it to recognize any suspicious activity. Let's consider the example of a hotel lobby. All the walls and furniture have a fixed location. If we build a background model, we can use it to identify suspicious activity in the lobby. We are taking advantage of the fact that the background scene remains static (which happens to be true in this case). This helps us avoid any unnecessary computational overhead. As the name indicates, this algorithm works by detecting and assigning...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine