As we discussed earlier, background subtraction methods are affected by many factors. Their accuracy depends on how we capture the data and how it's processed. One of the biggest factors that affects these algorithms is the noise level. When we say noise, we are talking about things such as graininess in an image and isolated black/white pixels. These issues tend to affect the quality of our algorithms. This is where morphological image processing comes into play. Morphological image processing is used extensively in a lot of real-time systems to ensure the quality of the output. Morphological image processing refers to processing the shapes of features in the image; for example, you can make a shape thicker or thinner. Morphological operators rely not on how the pixels are ordered in an image, but on their values. This is why they are really...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand